Stability and Bifurcations of Equilibria in Networks with Piecewise Linear Interactions
نویسندگان
چکیده
In this paper, we study equilibria of differential equation models for networks. When interactions between nodes are taken to be piecewise constant, an efficient combinatorial analysis can used characterize the equilibria. constant functions replaced with linear functions, preserved as long sufficiently steep. Therefore leveraged understand a broader class interactions. To better how broad is, explicitly steep must correspondence hold. do so, analyze steady state and Hopf bifurcations which cause change in number or stability slopes decreased. Additionally, show choose subset parameters so that holds smallest possible when remaining fixed.
منابع مشابه
stability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
Piecewise-linear models of genetic regulatory networks: equilibria and their stability.
A formalism based on piecewise-linear (PL) differential equations, originally due to Glass and Kauffman, has been shown to be well-suited to modelling genetic regulatory networks. However, the discontinuous vector field inherent in the PL models raises some mathematical problems in defining solutions on the surfaces of discontinuity. To overcome these difficulties we use the approach of Filippo...
متن کاملBifurcations and Chaos in Time Delayed Piecewise Linear Dynamical Systems
We reinvestigate the dynamical behavior of a first order scalar nonlinear delay differential equation with piecewise linearity and identify several interesting features in the nature of bifurcations and chaos associated with it as a function of the delay time and external forcing parameters. In particular, we point out that the fixed point solution exhibits a stability island in the two paramet...
متن کاملBorder Collision Bifurcations in n-Dimensional Piecewise Linear Discontinuous Maps
Abstract. In this paper we report some important results that help in analizing the border collision bifurcations that occur in n-dimensional discontinuous maps. For this purpose, we use the piecewise linear approximation in the neighborhood of the plane of discontinuity. Earlier, Feigin had made a similar analysis for general n-dimensional piecewise smooth continuous maps. Proceeding along sim...
متن کاملBifurcations of Equilibria of a Non-linear Age Structured Model
A. In [6], M. E. Gurtin and R. C. MacCamy investigated a non-linear agestructured population dynamical model, which served as one of the basic non-linear population dynamical models in the last three decades. They described a characteristic equation but they did not use it to discuss stability of equilibria of the system in certain special cases. In a recent paper [4] M. Farkas deduced a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Bifurcation and Chaos
سال: 2021
ISSN: ['0218-1274', '1793-6551']
DOI: https://doi.org/10.1142/s0218127421300329